

0040-4039(95)02249-X

Hetero-1,3-Dipolar Cycloadditions of Dithiolane-Isocyanate Imminium Methylides: A Novel Route to 1,3-Oxazolidine- and Thiazolidine-2-thiones.

Colin W.G. Fishwick* Richard J. Foster

School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

Robin E. Carr

Glaxo Research and Development Ltd., Glaxo Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts., SG1 2NY, UK.

Abstract: Dithiolane- isocyanate imminium methylides which are a new type of azomethine methylidederived 1,3-dipole undergo efficient and regioselective cycloaddition to conjugated carbonyls and thiocarbonyls to yield predominantly 1,3-oxazolidine- and thiazolidine-2-thiones formed from the initial cycloadducts via loss of thiirane.

We have recently described¹ the generation and cycloadditions of dithiolane-isocyanate imminium methylides 2, which are a new type of azomethine ylide-derived 1,3-dipole (Scheme 1). These remarkable systems, which can be generated under very mild conditions from readily available precursors $1,^2$ were found to undergo efficient cycloaddition to a range of olefinic dipolarophiles to yield dithiolane-protected γ -lactams 3 which could be efficiently deprotected to yield the corresponding γ -lactams 4 in high yields (Scheme 1).

Scheme 1

The efficiency of these cycloadditions to olefins prompted us to explore the cycloadditions of dipole 2 to hetero-dipolarophiles, an area which has attracted relatively little attention despite the high dipolarophilic nature of the C=X bond³ and obvious potential in heterocyclic synthesis⁴.

We now report that the dithiolane-isocyanate imminium methylide 2, generated from desilylation of readily available salt 1, undergoes efficient cycloaddition to conjugated⁵ carbonyls and thiocarbonyls to initially yield adducts 6 along with (where X=O) small amounts of the regioisomer 5 (Scheme 2). In the case of addition across a carbon-oxygen double bond, although clearly present in the crude reaction mixture (n.m.r), adducts 6 (X=O) could not be isolated and upon chromatography, the thiones 7 (X=O) were obtained, presumably via an acid-catalysed loss of thiirane⁶ from adducts 6, along with the adducts 5 (Scheme 2). Upon addition of 2 across

a carbon-sulphur double bond, the initial spirocyclic adduct 6 (X=S) is more stable and could be isolated. Conversion to the thiazolidine-2-thione 7 (X=S) was achieved by refluxing in chloroform (48 hours).

The results of a number of cycloadditions are summarised (Table 1).

Scheme 2

In a typical procedure a solution of the imino dithiolane salt 1 (1mmol) and the dipolarophile (1.1mmol) in the appropriate solvent (4ml) was added to cesium fluoride (4mmol) at -78°C. The resulting mixture was allowed to warm to room temperature with stirring and when t.l.c indicated a complete reaction, dichloromethane (20ml) was added and the reaction mixture filtered through a celite plug. Evaporation of the solvent followed by silica gel chromatography then furnished the pure cycloadducts.⁷

Table 1 Cyloaddition of azomethine ylide 2 to hetero-dipolarophiles.

Entrya	Carbonyl compound			Products 7+5 (% yield)b	
	R ¹	R ²	X		
1.	Ph	Н	O	7a (59%) + 5a (11%),	
2.	$4-(NO_2)-C_6H_4$	Н	О	7 b (51%)° + 5b (7%)	
3.	2-napthyl	Н	O	7c(28%) + 5c(3%)	
4.	4 -(OMe)- C_6H_4	Н	O	7d(52%) + 5d(7%)	
5.	Ph	Ph	О	7 e (47%)	
6.	(E) - $C_6H_4CH=CH$	Н	О	7 f(59%) + 5 f(11%)	
7.	2-pyridyl	Н	О	7 g (63%)	
8.			S	7h (43%) ^c	

a Cycloadditions in acetonitrile except entry 8 in dimethoxyethane. b Product and yield after silica gel chromatography

The following points are noteworthy:

It is interesting that in all cases the regioisomeric preference is for cycloadduct type 6, this being the only product from cycloaddition to benzophenone (6e, entry 5), pyridine-2-carboxaldehyde (6g, entry 7), and

^c Quantitative from spirocycle 6 i on reluxing in chloroform (48hours).

xanthione⁸ (6h, entry 8). The orientation preference in these reactions is in agreement with Frontier Molecular Orbital theory. ⁹ The regioselectivity appears to be a result of union of the larger LUMO coefficient on the carbon atom of the carbonyl group with the larger HOMO coefficient on the unsubstituted carbon of the 1,3-dipole.

Conversion of the minor regioisomers 5a to thiolactams 8a, was achieved by refluxing in toluene (48 hours) (Scheme 3).

We have observed similar thermally-induced thiirane eliminations on heating lactam mercaptals 3 (prepared via addition of dipole 2 to olefins, Scheme 4).1

Scheme 4

Table 2 Thermolysis of adducts 3 to yield thiolactams 9.

Entry	R ¹	R ²	Product (% yield) ^a	
1.	CO ₂ Me	Н	9a (86%)	
2.	Н	CO ₂ Me	9b (70%)	
3.	(trans)-CO ₂ Me	CO ₂ Me	(trans)-9c (92%)	
4.	4.4		9b (95%)	

a yield after isolation by silica gel chromatography

In summary, we have demonstrated that the readily available 1,3-dithiolane imminium methylide 2, acts as a synthetic equivalent of a thiocarbonyl substituted azomethine ylide. Trapping with hetero-dipolarophiles allows simple access to oxazolidine-2-thiones and thiazolidine-2-thiones respectively. The overall sequence represents an intriguing application of the 1,3-dipolar cycloaddition approach to mixed heterocyclic frameworks. Studies are now in progress directed towards the synthetic application of this technique.

Acknowledgement.

We thank the EPSRC and Glaxo Group Research for financial support.

References and notes.

- 1. Fishwick, C.W.G., Foster, R.J.; Carr, R.E. Tetrahedron Lett. 1995, in press.
- Prepared by addition of an equivalent of trimethylsilylmethyltrifluoromethanesulphonate to N-methyl 1,3-dithiolane, For a synthesis of N-methyl 1,3-dithiolane, see: Ueno, Y.; Nakai, T.; Okawara, M. Bull. Chem. Soc. Japan 1970, 43, 162.
- 3. Huisgen, R. Angew. Chem. Int. Ed. Engl. 1963, 2, 565.
- Cycloaddition of azomethine ylides across several classes of heterodipolarophile are known, see: Lown, J.W. in 1,3-Dipolar Cycloaddition Chemistry; Ed. Padwa, A.; Wiley, Vol. 1, p. 653 and references therein. A C=O double bond is the most common trapping agent, for some more recent examples see: (a) Kohra, S.; Ueda, K.; Tominaga, Y.; Chem. Pharm. Bull. 1995, 43, 204. (b) Tominaga, Y.; Takada, S.; Kohra, S. Heterocycles 1995, 105. (c) Tominaga, Y.; Ogata, K.; Kohra, S.; Hojo, M.; Hosomi, A. Tetrahedron Lett. 1991, 32, 5987. (d) Tominaga, Y.; Yanagai, T.; Hojo, M.; Miyashiro, Y.; Hosomi, A. J. Org. Chem. 1990, 55, 5308. (e) Padwa, A.; Haffmans, G.; Tomas, M. J. Org. Chem. 1984, 49, 3314.
- On attempted cycloaddition to simple non-conjugated aldehydes and ketones (eg. acetone, cyclohexanone and butyraldehyde), no reaction was observed.
- Decomposition of similar 1,4,5,9-hetero spiro[4.4]nonanes has been observed, see: (a) Ueno, Y.; Nakai, T.; Okawara, M. Bull. Chem. Soc. Japan 1970, 43, 168. (b) Baba, A.; Yano, K.; Amishiro, N.; Matsuda, H. Bull. Chem. Soc. Japan 1991, 64, 2661.
- 7. All new compounds gave satisfactory spectroscopic and analytical data consistent with the indicated structures; representative data (entry 1): 3-methyl 4-phenyl oxazolidine-2-thione 7a colourless needles (m.p.129-130°C; DCM/pet.). vmax(mull)cm⁻¹: 2960, 2880, 1530, 1430, 1330, 1310, 1180. ¹H NMR(CDCl₃):δ 3.25(3H,s,NMe), 3.74(1H,dd,J=7,7.5Hz,Hβ-4), 4.19(1H,dd,J=7,7.5Hz,Hβ-4), 5.64(1H,t,J=7Hz,Hβ-5), 7.31-7.48(5H,m). MS m/z(%): 193(M+, 56), 132(21), 104(100), 91(25), 78(19). Anal. C₁₀H₁₁NOS requires(%) C 62.18 N 5.76 N 7.25 found(%) C 61.90 H 5.50 N 7.05. 9-phenyl, 6-methyl 1,4-dithia-6-aza-8-oxaspiro[4.4]nonane 5a colourless oil. vmax(film)cm⁻¹: 2920, 2880, 1480, 1440, 1240, 1200. ¹H NMR(CDCl₃):δ 2.49(3H,s,NMe), 2.79(1H,m,H-2'), 2.99-3.20(3H,m,H-2,3), 4.47(1H,d,J=12Hz,H-7α), 4.48 (1H,d,J=12Hz,H-7β), 5.40(1H,s,H-9), 7.31-7.40(3H,m), 7.50-7.60(2H,m). MS m/z(%): 253(M+, 70), 193(81), 147(66), 119(91), 105(43), 87(100), 77(31), 60(24), 44(34). Anal. C₁₂H₁₅NOS₂ requires(%) C 56.92 H 5.93 N 5.53 found(%) C 56.60 H 5.60 N 5.40. Complete experimental details will be published elsewhere.
- 8. Lawesson, S.O.; Scheibye. S.; Shabana, R. Tetrahedron 1982, 38, 993.
- 9. Fleming, I. in Frontier Orbitals and Organic Chemical Reactions; Wiley, 1976, pp. 148-160.

(Received in UK 3 November 1995; revised 23 November 1995; accepted 24 November 1995)