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Abstract: Dithiolane- isocyanate imminium methylides which are a new type of azomethine methylide-
derived 1,3-dipole undergo efficient and regioselective cycloaddition to conjugated carbonyls and
thiocarbonyls to yield predominantly 1,3-oxazolidine- and thiazolidine-2-thiones formed from the initial
cycloadducts via loss of thiirane.

We have recently described! the generation and cycloadditions of dithiolane-isocyanate imminium
methylides 2, which are a new type of azomethine ylide-derived 1,3-dipole (Scheme 1). These remarkable
systems, which can be generated under very mild conditions from readily available precursors 1,2 were found to

undergo efficient cycloaddition to a range of olefinic dipolarophiles to yield dithiolane-protected y-lactams 3

which could be efficiently deprotected to yield the corresponding y-lactams 4 in high yields (Scheme 1).
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The efficiency of these cycloadditions to olefins prompted us to explore the cycloadditions of dipole 2 to
hetero-dipolarophiles, an area which has attracted relatively little attention despite the high dipolarophilic nature
of the C=X bond? and obvious potential in heterocyclic synthesis®.

We now report that the dithiolane-isocyanate imminium methylide 2, generated from desilylation of readily
available salt 1, undergoes efficient cycloaddition to conjugated® carbonyls and thiocarbonyls to initially yield
adducts 6 along with (where X=0) small amounts of the regioisomer 5§ (Scheme 2). In the case of addition
across a carbon-oxygen double bond, although clearly present in the crude reaction mixture (n.m.r), adducts 6
(X=0) could not be isolated and upon chromatography, the thiones 7 (X=0) were obtained, presumably via an
acid-catalysed loss of thiirane® from adducts 6, along with the adducts § (Scheme 2). Upon addition of 2 across
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a carbon-sulphur double bond, the initial spirocyclic adduct 6 (X=S) is more stable and could be isolated.
Conversion to the thiazolidine-2-thione 7 (X=S) was achieved by refluxing in chloroform (48 hours).
The results of a number of cycloadditions are summarised (Table 1).
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In a typical procedure a solution of the imino dithiolane salt 1 (1mmol) and the dipolarophile (1.1mmol) in
the appropriate solvent (4ml) was added to cesium fluoride (4mmol) at -78°C. The resulting mixture was
allowed to warm to room temperature with stirring and when t.l.c indicated a complete reaction,
dichloromethane (20ml) was added and the reaction mixture filtered through a celite plug. Evaporation of the
solvent followed by silica gel chromatography then furnished the pure cycloadducts.”

Table 1 Cyloaddition of azomethine ylide 2 to hetero-dipolarophiles.

Entry? Carbonyl compound Products 7+5 (% yield)®
R! R2 X

1. Ph H 0] 7a(59%) + Sa(11%),

2. 4-(NO,)-CqHy H 6] 7b(51%)c + S5b (7%)

3. 2-napthyl H O 7¢(28%) + 5¢(3%)

4. 4-(OMe)-CcH, H (0] 7d(52%) + 5d(7%)

5. Ph Ph (0] 7 e(47%)

6. (E)-C¢H,CH=CH H 0 71(59%) + 5£(11%)

7. 2-pyridyl H 0 78(63%)

8. QOD S Th(43%)°

2 Cycloadditions in acetonitrile except entry 8 in dimethoxyethane. b product and yield after silica gel chromatography
€ Quantitative from spirocycle 6 i on reluxing in chloroform (48hours).

The following points are noteworthy:
It is interesting that in all cases the regioisomeric preference is for cycloadduct type 6, this being the only
product from cycloaddition to benzophenone (6e, entry 5), pyridine-2-carboxaldehyde (6g, entry 7), and
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xanthione® (6h, entry 8).The orientation preference in these reactions is in agreement with Frontier Molecular

Orbital theory.® The regioselectivity appears to be a result of union of the larger LUMO coefficient on the carbon

atom of the carbonyl group with the larger HOMO coefficient on the unsubstituted carbon of the 1,3-dipole.
Conversion of the minor regioisomers 5a to thiolactams 8a, was achieved by refluxing in toluene (48

hours) (Scheme 3).
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We have observed similar thermally-induced thiirane eliminations on heating lactam mercaptals 3 (prepared
via addition of dipole 2 to olefins, Scheme 4).!
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Table 2 Thermolysis of adducts 3 to yield thiolactams 9.

Entry R! R2 Product (% yield)2

1. CO,Me H 9a (86%)

2. H COyMe 9b (70%)

3. (trans )-CO,Me COyMe (trans )-9¢ (92%)
o Me o

4. \/ \/ 9b (95%)

dyield after isolation by silica gel chromatography

In summary, we have demonstrated that the readily available 1,3-dithiolane imminium methylide 2, acts as
a synthetic equivalent of a thiocarbony! substituted azomethine ylide. Trapping with hetero-dipolarophiles allows
simple access to oxazolidine-2-thiones and thiazolidine-2-thiones respectively. The overall sequence represents
an intriguing application of the 1,3-dipolar cycloaddition approach to mixed heterocyclic frameworks. Studies
are now in progress directed towards the synthetic application of this technique.
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